In 1891, Tesla unveiled one of his most important inventions, the "Tesla coil," a high-frequency transformer capable of creating very high voltage at low current. He built several variations of his invention.
Entertainment& Education
Tesla coils are displayed as attractions at science museums and electronics fairs, and are used to demonstrate principles of high frequency electricity in science classes in schools and colleges.
Since they are simple enough for an amateur to make, Tesla coils are a popular student science fair project, and are homemade by a large worldwide community of hobbyists. Builders of Tesla coils as a hobby are called "coilers". They attend "coiling" conventions where they display their home-made Tesla coils and other high voltage devices. Low-power Tesla coils are also sometimes used as a high-voltage source for Kirlian photography
How it works
The power source is hooked up to the primary coil. The primary coil's capacitor acts like a sponge and soaks up the charge. The primary coil itself must be able to withstand the massive charge and huge surges of current, so the coil is usually made out of copper, a good conductor of electricity. Eventually, the capacitor builds up so much charge that it breaks down the air resistance in the spark gap. Then, similar to squeezing out a soaked sponge, the current flows out of the capacitor down the primary coil and creates a magnetic field.
The massive amount of energy makes the magnetic field collapse quickly, and generates an electric current in the secondary coil. The voltage zipping through the air between the two coils creates sparks in the spark gap. The energy sloshes back and forth between the two coils several hundred times per second, and builds up in the secondary coil and capacitor. Eventually, the charge in the secondary capacitor gets so high that it breaks free in a spectacular burst of electric current.
Warning
An erroneous explanation for the absence of electric shock that has persisted among Tesla coil hobbyists is that the high frequency currents travel through the body close to the surface, and thus do not penetrate to vital organs or nerves, due to an electromagnetic phenomenon called.
The high voltage radio frequency (RF) discharges from the output terminal of a Tesla coil pose a unique hazard not found in other high voltage equipment: when passed through the body they often do not cause the painful sensation and muscle contraction of electric shock , as lower frequency AC or DC currents do. The nervous system is insensitive to currents with frequencies over 10 – 20 kHz. It is thought that the reason for this is that a certain minimum number of ions must be driven across a nerve cell 's membrane by the imposed voltage to trigger the nerve cell to depolarize and transmit an impulse. At radio frequencies, there is insufficient time during a half-cycle for enough ions to cross the membrane before the alternating voltage reverses. The danger is that since no pain is felt, experimenters often assume the currents are harmless. Teachers and hobbyists demonstrating small Tesla coils often impress their audience by touching the high voltage terminal or allowing the streamer arcs to pass through their body.
Buy it for yourselves here: http://bit.ly/362H8XZ
0 comments